EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Altamimi et al. 2002
Altamimi, Z., Sillard, P. and Boucher, C. (2002). ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. Journal of Geophysical Research 107: doi: 10.1029/2001JB000561. issn: 0148-0227.

For the first time in the history of the International Terrestrial Reference Frame, the ITRF2000 combines unconstrained space geodesy solutions that are free from any tectonic plate motion model. Minimum constraints are applied to these solutions solely in order to define the underlying terrestrial reference frame (TRF). The ITRF2000 origin is defined by the Earth center of mass sensed by satellite laser ranging (SLR) and its scale by SLR and very long baseline interferometry. Its orientation is aligned to the ITRF97 at epoch 1997.0, and its orientation time evolution follows, conventionally, that of the no-net-rotation NNR-NUVEL-1A model. The ITRF2000 orientation and its rate are implemented using a consistent geodetic method, anchored over a selection of ITRF sites of high geodetic quality, ensuring a datum definition at the 1 mm level. This new frame is the most extensive and accurate one ever developed, containing about 800 stations located at about 500 sites, with better distribution over the globe compared to past ITRF versions but still with more site concentration in western Europe and North America. About 50% of station positions are determined to better than 1 cm, and about 100 sites have their velocity estimated to at (or better than) 1 mm/yr level. The ITRF2000 velocity field was used to estimate relative rotation poles for six major tectonic plates that are independent of the TRF orientation rate. A comparison to relative rotation poles of the NUVEL-1A plate motion model shows vector differences ranging between 0.03¿ and 0.08¿/m.y. (equivalent to approximately 1--7 mm/yr over the Earth's surface). ITRF2000 angular velocities for four plates, relative to the Pacific plate, appear to be faster than those predicted by the NUVEL-1A model. The two most populated plates in terms of space geodetic sites, North America and Eurasia, exhibit a relative Euler rotation pole of about 0.056 (¿0.005)¿/m.y. faster than the pole predicted by NUVEL-1A and located about (10¿N, 7¿E) more to the northwest, compared to that model.

BACKGROUND DATA FILES

Abstract

Keywords
History of Geophysics, Geodesy, Tectonophysics, Plate motions--general, Geodesy and Gravity, Reference systems, Geodesy and Gravity, Terrestrial reference systems
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit