EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Bauer et al. 2002
Bauer, S., Swenson, M.S. and Griffa, A. (2002). Eddy mean flow decomposition and eddy diffusivity estimates in the tropical Pacific Ocean: 2. Results. Journal of Geophysical Research 107: doi: 10.1029/2000JC000613. issn: 0148-0227.

Eddy diffusivity of the surface velocity field in the tropical Pacific Ocean was estimated using satellite-tracked drifting buoys (1979 through mid-1996). The tropical Pacific surface current system is characterized by nonstationarity, strong meridional shear, and an energetic mesoscale velocity field. Eddy diffusivity may be defined as the integral of the autocovariance of Lagrangian eddy velocities, requiring both stationary and homogeneous statistics of the eddy field. Eddy velocities were obtained by removing a splined mean field to eliminate mean shear from observations binned (1) spatially to group data that have similar dispersion characteristics and (2) temporally to create stationary eddy statistics. Zonal diffusivity estimates are up to ≈7 times larger than meridional diffusivity estimates in the high eddy energy regions. This anisotropy is associated with the meridional mesoscale wave motion (i.e., by equatorial and tropical instability waves) that increases eddy variance but does not lead to a proportional increase in water parcel diffusion because of the coherent character of the trajectory motion, at least for initial time lags. Simple autoregressive models of first and second order are used to describe and classify the resulting eddy statistics. An independent confirmation of the diffusivity estimate in the central/eastern Pacific was obtained by comparing tracer flux divergence computed from a parameterization using diffusivity estimates of our analysis with that from direct eddy Reynolds stress flux divergence. Our results show that diffusivity can be estimated for regions not considered previously either because of sparse data or the complexities of the velocity field.

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, Physical, Turbulence, diffusion, and mixing processes, Oceanography, Physical, Eddies and mesoscale processes, Oceanography, Physical, Upper ocean processes, Oceanography, General, Equatorial oceanography
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit