Studies were conducted on the efficiency of systems based on the use of ozone, activated carbon, and ozone/activated carbon in the treatment of waters containing 1-naphthalenesulphonic acid, 1,5-naphthalenedisulphonic acid, and 1,3,6-naphthalenetrisulphonic acid. In the removal of these acids by adsorption on activated carbon the elevated heights of the mass transfer zone columns and the low values of the breakthrough volumes indicated that a system exclusively based on the use of activated carbon is not appropriate for the removal of these pollutants. In the ozonation of these acids the reactivity of naphthalenesulphonic acid with ozone is low. In addition, the initial concentration of total organic carbon (TOC) was not reduced during naphthalenesulphonic acids ozonation. These results indicate that a system exclusively based on the use of ozone is not adequate to decontaminate water where these acids are present. These ozonation processes were also studied in the presence of activated carbon. The presence of activated carbon enhanced the elimination rate, probably by enhancing ozone decomposition in aqueous phase in highly oxidative species. These catalytic properties seem to be favored by both the basicity of the carbon surface and the higher macropore volume. The catalytic properties of activated carbon were reduced by ozonation. New acid groups such as anhydride, lactones, and carboxylic acid were generated on the activated carbon surface during ozone treatment. This effect reduced the reactivity of the activated carbon to ozone and therefore the capacity to enhance ozone decomposition in aqueous phase. The presence of activated carbon during naphthalenesulphonic acid ozonation produced a reduction in the TOC concentration and in the genotoxicity of the degradation products. All these results indicate that this novel combined system is very promising for the treatment of water polluted with organic matter. |