EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Borradaile & Hamilton 2003
Borradaile, G.J. and Hamilton, T. (2003). Limestones distinguished by magnetic hysteresis in three-dimensional projections. Geophysical Research Letters 30: doi: 10.1029/2003GL017892. issn: 0094-8276.
Magnetic hysteresis data determine the suitability of rocks for paleomagnetic work, provide clues to paleo-environment and paleo-climate and they may characterize depositional environments for limestones. However, the variables chosen for conventional two-dimensional hysteresis plots, such as that of Day et al. <1977>, are not always suitable to discriminate between samples. Distinguishing samples by their regression surfaces in 3D hysteresis space may be more successful in some cases but a 2D projection with a less arbitrary viewing axis is preferable for routine reporting. We show that limestone samples are simply discriminated in a new 2D projection produced by projecting hysteresis data from three dimensions (x, y, z = Mr/Ms, Bcr, Bc) onto a plane containing the Mr/Ms axis. The orientation of the plane is controlled by its x-axis that is defined by a suitably selected Bcr/Bc ratio, most often in the magnetite PSD range, 2< (Bcr/Bc) < 4. Magnetic hysteresis data determine the suitability of rocks for paleomagnetic work, provide clues to paleo-environment and paleo-climate and they may characterize depositional environments for limestones. However, the variables chosen for conventional two-dimensional hysteresis plots, such as that of Day et al. <1977>, are not always suitable to discriminate between samples. Distinguishing samples by their regression surfaces in 3D hysteresis space may be more successful in some cases but a 2D projection with a less arbitrary viewing axis is preferable for routine reporting. We show that limestone samples are simply discriminated in a new 2D projection produced by projecting hysteresis data from three dimensions (x, y, z = Mr/Ms, Bcr, Bc) onto a plane containing the Mr/Ms axis. The orientation of the plane is controlled by its x-axis that is defined by a suitably selected Bcr/Bc ratio, most often in the magnetite PSD range, 2< (Bcr/Bc) < 4.
BACKGROUND DATA FILES

Abstract

Keywords
Geomagnetism and Paleomagnetism, Paleomagnetism applied to geologic processes, Geomagnetism and Paleomagnetism, Remagnetization, Geomagnetism and Paleomagnetism, Rock and mineral magnetism, Geomagnetism and Paleomagnetism, Instruments and techniques
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit