EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Swartz et al. 1979
Swartz, W.E., Williams, G.J. and McDonough, T.R. (1979). The role of energetic particle precipitation in Jovian magnetospherics: 1. Secondary electrons from the ionosphere of Jupiter. Geophysical Research Letters 6: doi: 10.1029/GL006i005p00389. issn: 0094-8276.

Escape of photoelectrons from the Jovian ionosphere produces only a meager source of thermal plasma for the inflated centrifugally unstable magnetosphere and is unable to account for the 100 eV thermal plasma temperatures of the magnetosphere. Since the Jovian magnetosphere is well populated with highly energetic electrons, the creation of secondaries and the energy degradation of the primaries precipitating into the lower ionosphere provide additional sources of magnetospheric thermal plasma as well as of the energy for further elevating the plasma temperatures in the top side ionosphere. The efficiencies with which escaping electrons are created by precipitating electrons with energies up to several MeV are computed using energetic electron transport and thermalization codes. The more energetic incident fluxes are far less efficient in creating escaping electrons than the lower energy fluxes with only 0.001% of the secondaries escaping for a 1 MeV source versus 3% for a 1 keV source. Incident fluxes of the order of 10 to 100 per sq cm per sec per eV between 100 eV and 100 keV are required to produce 50 eV escape fluxes comparable to those generated by solar EUV.

BACKGROUND DATA FILES

Abstract

Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit