EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Cattell et al. 2002
Cattell, C., Johnson, L., Bergmann, R., Klumpar, D., Carlson, C., McFadden, J., Strangeway, R., Ergun, R., Sigsbee, K. and Pfaff, R. (2002). FAST observations of discrete electrostatic waves in association with down-going ion beams in the auroral zone. Journal of Geophysical Research 107: doi: 10.1029/2001JA000254. issn: 0148-0227.

Ion beams flowing downward, into the ionosphere, along the Earth's magnetic field have frequently been observed by the FAST satellite in the auroral zone. These discrete downward moving ion beams (DFI) have been characterized by Klumpar et al. <1999> who interpreted the horseshoe-shaped distributions as being consistent with acceleration in a parallel potential drop above the satellite, followed by motion into a region of increased magnetic field strength. The down-flowing ion beams are associated with an intense narrowband electrostatic emission at the lower hybrid frequency, polarized perpendicular to the geomagnetic field. Hydrogen cyclotron harmonics both above and below the lower hybrid frequency are also very common. These are the first observations of down-flowing ions and associated waves outside of the cusp, and the physical mechanism producing the ions is very different from the one associated with cusp ion injections. The DFI events that had a monotonic increase in energy were associated with a clear field-aligned current signature. The DFI densities were usually ~5--10/cc, whereas the background plasma had densities up to 100/cc. The wave and DFI observations are consistent with linear dispersion relation calculations and simulations with ion ring distributions that show that the instability is due to coupling of the ion Bernstein waves to the lower hybrid wave. In addition, for a few events, electrostatic ion cyclotron waves were observed. Such waves are usually associated with up-going ion beams and have not previously been seen with DFI, which have a very different shape in the distribution.

BACKGROUND DATA FILES

Abstract

Keywords
Ionosphere, Plasma waves and instabilities, Magnetospheric Physics, Auroral phenomena, Magnetospheric Physics, Plasma waves and instabilities, Space Plasma Physics, Wave/particle interactions
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit