EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Rex et al. 2002
Rex, M., Salawitch, R.J., Harris, N.R.P., von der Gathen, P., Braathen, G.O., Schulz, A., Deckelmann, H., Chipperfield, M., Sinnhuber, B.-M., Reimer, E., Alfier, R., Bevilacqua, R., Hoppel, K., Fromm, M., Lumpe, J., Küllmann, H., Kleinböhl, A., Bremer, H., von König, M., Künzi, K., Toohey, D., Vömel, H., Richard, E., Aikin, K., Jost, H., Greenblatt, J.B., Loewenstein, M., Podolske, J.R., Webster, C.R., Flesch, G.J., Scott, D.C., Herman, R.L., Elkins, J.W., Ray, E.A., Moore, F.L., Hurst, D.F., Romashkin, P., Toon, G.C., Sen, B., Margitan, J.J., Wennberg, P., Neuber, R., Allart, M., Bojkov, B.R., Claude, H., Davies, J., Davies, W., De Backer, H., Dier, H., Dorokhov, V., Fast, H., Kondo, Y., Kyrö, E., Litynska, Z., Mikkelsen, I.S., Molyneux, M.J., Moran, E., Nagai, T., Nakane, H., Parrondo, C., Ravegnani, F., Skrivankova, P., Viatte, P. and Yushkov, V. (2002). Chemical depletion of Arctic ozone in winter 1999/2000. Journal of Geophysical Research 107: doi: 10.1029/2001JD000533. issn: 0148-0227.

During Arctic winters with a cold, stable stratospheric circulation, reactions on the surface of polar stratospheric clouds (PSCs) lead to elevated abundances of chlorine monoxide (ClO) that, in the presence of sunlight, destroy ozone. Here we show that PSCs were more widespread during the 1999/2000 Arctic winter than for any other Arctic winter in the past two decades. We have used three fundamentally different approaches to derive the degree of chemical ozone loss from ozonesonde, balloon, aircraft, and satellite instruments. We show that the ozone losses derived from these different instruments and approaches agree very well, resulting in a high level of confidence in the results. Chemical processes led to a 70% reduction of ozone for a region ~1 km thick of the lower stratosphere, the largest degree of local loss ever reported for the Arctic. The Match analysis of ozonesonde data shows that the accumulated chemical loss of ozone inside the Arctic vortex totaled 117 ¿ 14 Dobson units (DU) by the end of winter. This loss, combined with dynamical redistribution of air parcels, resulted in a 88 ¿ 13 DU reduction in total column ozone compared to the amount that would have been present in the absence of any chemical loss. The chemical loss of ozone throughout the winter was nearly balanced by dynamical resupply of ozone to the vortex, resulting in a relatively constant value of total ozone of 340 ¿ 50 DU between early January and late March. This observation of nearly constant total ozone in the Arctic vortex is in contrast to the increase of total column ozone between January and March that is observed during most years.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Middle atmosphere--constituent transport and chemistry, Global Change, Atmosphere (0315, 0325), Information Related to Geographic Region, Arctic region, Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Middle atmosphere--composition and chemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit