|
Detailed Reference Information |
Ganzeveld, L. and Lelieveld, J. (2004). Impact of Amazonian deforestation on atmospheric chemistry. Geophysical Research Letters 31: doi: 10.1029/2003GL019205. issn: 0094-8276. |
|
A single-column chemistry and climate model has been used to study the impact of deforestation in the Amazon Basin on atmospheric chemistry. Over deforested areas, daytime ozone deposition generally decreases strongly except when surface wetness decreases through reduced precipitation, whereas nocturnal soil deposition increases. The isoprene and soil nitric oxide emissions decrease although nitrogen oxide release to the atmosphere increases due to reduced canopy deposition. Deforestation also affects vertical transport causing substantial ozone and hydroxyl changes, also depending on soil moisture. The analysis shows that assessment of the impact of land cover and land use changes on atmospheric chemistry requires the development of explicitly coupled chemistry and meteorological models including surface trace gas exchanges, micro-meteorology and the hydrological cycle. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Troposphere—constituent transport and chemistry, Hydrology, Soil moisture, Meteorology and Atmospheric Dynamics, Land/atmosphere interactions |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|