EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Ledo et al. 2004
Ledo, J., Jones, A.G., Ferguson, I.J. and Wolynec, L. (2004). Lithospheric structure of the Yukon, northern Canadian Cordillera, obtained from magnetotelluric data. Journal of Geophysical Research 109: doi: 10.1029/2003JB002516. issn: 0148-0227.

Two goals of Lithoprobe's geoscientific studies in the Phanerozoic accretionary cordillera of western North America were to define the subsurface geometries of the terranes and to infer the physical conditions of the crust. These questions were addressed in Canada's southern cordillera a decade ago and have more recently been addressed in the northern cordillera, of which one component of the new studies is magnetotelluric (MT) profiling from ancestral North American rocks to the coast. We present a resistivity cross section, and its interpretation, of the northern cordillera derived from modeling data from 42 MT sites along a 470-km-long NE-SW profile. Beneath the Coast Belt (southwestern end of the profile) a deep crustal low-resistivity layer dips inland; we interpret the crustal part of this conductor as being due to metasedimentary rocks emplaced and metamorphosed during Paleocene Kula plate subduction. A strong lateral transition in lithospheric mantle resistivity exists below the Intermontane Belt that is spatially coincident with changes in chemical and isotopic characteristics of Tertiary to recent alkaline lavas, suggesting that isotopically enriched lithosphere related to the Coast Belt basalts extends partly beneath the Intermontane Belt. The unusually high lower crustal resistivity in the Intermontane and Omineca Belts, similar in value to the resistivity found in the unextended part of central British Columbia, excludes the presence of fluids or conducting metasediments. Finally, our resistivity model displays strong lateral variation of the middle and lower crust between different terranes within the same belt, as a result of the complex structural evolution of the lithosphere.

BACKGROUND DATA FILES

Abstract

Keywords
Exploration Geophysics, Magnetic and electrical methods, Geomagnetism and Paleomagnetism, Geomagnetic induction, Tectonophysics, Continental tectonics—general, Tectonophysics, Dynamics of lithosphere and mantle—general, magnetotelluric, accreted terranes, northern Canadian Cordillera
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit