|
Detailed Reference Information |
Doskey, P.V., Kotamarthi, V.R., Fukui, Y., Cook, D.R., Breitbeil, F.W. and Wesely, M.L. (2004). Air-surface exchange of peroxyacetyl nitrate at a grassland site. Journal of Geophysical Research 109: doi: 10.1029/2004JD004533. issn: 0148-0227. |
|
Direct measurements of the dry deposition velocity of peroxyacetyl nitrate (PAN) were made during the daytime between the months of July and October above a grassland surface in northern Illinois by a modified Bowen ratio technique. Differences in the air temperature, water vapor content, and PAN concentration were measured between the heights of 3.0 m and 0.92 m. Although the measurement uncertainties were large, the cumulative data indicate a slight downward flux of PAN, with an average and standard error of 0.13 ¿ 0.13 cm s-1 for the dry deposition velocity. Theoretical calculations showed that thermochemical decomposition of PAN on leaf and soil surfaces heated to temperatures above the ambient air levels would contribute less than 15% of the total PAN flux at the elevations of the PAN measurements. A theoretical evaluation of the transfer of PAN through leaf stomata and the plant cuticular membrane indicated that uptake of PAN by vegetation during the daytime is controlled by transfer through the leaf stomata rather than the cuticular membrane. The stomatal resistance for PAN is greater by a factor of 1.6 than the value for O3. The mesophyll resistance for O3 is also expected to be less than the value for PAN, because O3 has more reaction sites within plant cells and reacts faster than PAN with protein thiols of the cell membranes. Measurements from other studies indicate that the dry deposition velocity for PAN above a vegetated surface during the daytime is lower by a factor of 0.5--0.3 than for O3. Our measurements of the PAN deposition velocity agree with the results of previous studies and with theoretical calculations based on the physicochemical properties of PAN and the grassland surface. These measurements imply that removal of PAN from the daytime atmospheric boundary layer by thermochemical decomposition is more rapid than dry deposition to a grassland surface. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Pollution—urban and regional, Atmospheric Composition and Structure, Troposphere—constituent transport and chemistry, PAN, air-surface exchange, dry deposition |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|