There is a fundamental relationship between the power that is extracted from Jupiter's rotation to drive magnetospheric processes and the rate at which mass is injected into the Io plasma torus. Half of this power is consumed by bulk motion of the plasma and the other half represents an upper limit on the energy from rotation available for dissipation and in particular to excite the Jovian aurora. Since the rotation of the planet is the only plausible source of energy, the power inferred from the observed auroral intensities requires a plasma injection rate of 2.6¿1029 AMU/sec or greater. This in turn leads to a residence time of a torus particle of 48 d. or less. These results raise doubts about the applicability of equilibrium thermodynamics to the determination of plasma parameters in the Io torus. |