EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Eguchi & Shiotani 2004
Eguchi, N. and Shiotani, M. (2004). Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere. Journal of Geophysical Research 109: doi: 10.1029/2003JD004314. issn: 0148-0227.

Space-time variations of tropical upper tropospheric water vapor and cirrus clouds associated with the intraseasonal oscillation (ISO) are investigated using data from the Microwave Limb Sounder (MLS) and the Cryogenic Limb Array Etalon Spectrometer (CLAES) on board the Upper Atmosphere Research Satellite (UARS). Composite moisture and meteorological fields based on five ISO events selected in two boreal winters (1991--1993) are analyzed using 20--80 day band-pass-filtered data. At 215 and 146 hPa, wet anomalies with frequent appearance of cirrus clouds exist over the convective system and move eastward from the Indian Ocean to the central Pacific, suggesting a direct effect of convective activity up to this level. At 100 hPa, however, the moisture field seems to be indirectly affected by convective activity through the dynamical response to the convective heating. Dry anomalies are observed over the Indian Ocean around the developing stage and over the eastern Pacific around the mature-to-decaying stage of the ISO. Cirrus clouds are frequently found over the cold region located to the east of the convective system. These structures around the tropopause level are closely related to the eastward moving Kelvin and Rossby wave responses to the convective heating with the equatorial cold anomaly and with the subtropical anticyclonic gyres. Between the two gyres the easterly wind blowing through the equatorial cold region may cause dehydration through cirrus formation when the convective system develops over the Indian Ocean and the western Pacific. As the northern gyre intensifies, tropical dry air is transported to the subtropical Pacific and eventually to the equatorial eastern Pacific. It is suggested that the temperature and flow variations due to the coupled Kelvin-Rossby wave structure play an important role in dehydrating air in the tropical and subtropical tropopause region.

BACKGROUND DATA FILES

Abstract

Keywords
Meteorology and Atmospheric Dynamics, Stratosphere/troposphere interactions, Meteorology and Atmospheric Dynamics, Tropical meteorology, Atmospheric Composition and Structure, Troposphere—constituent transport and chemistry, upper tropospheric water vapor, cirrus clouds, intraseasonal oscillation
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit