EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Hoelzemann et al. 2004
Hoelzemann, J.J., Schultz, M.G., Brasseur, G.P., Granier, C. and Simon, M. (2004). Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data. Journal of Geophysical Research 109: doi: 10.1029/2003JD003666. issn: 0148-0227.

The new Global Wildland Fire Emission Model (GWEM) has been developed on the basis of data from the European Space Agency's monthly Global Burnt Scar satellite product (GLOBSCAR) and results from the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). GWEM computes monthly emissions of more than 40 chemical compounds and aerosols from forest and savanna fires. This study focuses on an evaluation of the GLOBSCAR data set. The GWEM version presented here makes use of the Moderate-Resolution Imaging Spectroradiometer (MODIS) land cover map. Emission totals for the year 2000 are 1741 Tg C, 5716 Tg CO2, 271 Tg CO, 12.52 Tg CH4, 9.09 Tg C (as nonmethane hydrocarbons), 8.08 Tg NOx (as NO), 24.30 Tg PM2.5, 15.80 Tg OC, and 1.84 Tg black carbon. These emissions are lower than other estimates found in literature. An evaluation assesses the uncertainties of the individual input data. The GLOBSCAR product yields reasonable estimates of burnt area for large wildland fires in most parts of the globe but experiences problems in some regions where small fires dominate. The seasonality derived from GLOBSCAR differs from other satellite products detecting active fires owing to the different algorithms applied. Application of the presented GWEM results in global chemistry transport modeling will require additional treatment of small deforestation fires in the tropical rain forest regions and small savanna fires, mainly in subequatorial Africa. Further improvements are expected from a more detailed description of the carbon pools and the inclusion of anthropogenic disturbances in the LPJ model.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Atmospheric Composition and Structure, Troposphere—constituent transport and chemistry, Atmospheric Composition and Structure, Constituent sources and sinks, Global Change, Biogeochemical processes, vegetation fire emissions, global area burnt satellite products, tropospheric chemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit