![](/images/icons/spacer.gif) |
Detailed Reference Information |
Cvetkovic, V., Painter, S., Turner, D., Pickett, D. and Bertetti, P. (2004). Parameter and model sensitivities for colloid-facilitated radionuclide transport on the field scale. Water Resources Research 40: doi: 10.1029/2004WR003048. issn: 0043-1397. |
|
We investigate the potential effects of inorganic colloids on radionuclide transport in groundwater using generic sensitivity studies and an example based on the alluvial aquifer near Yucca Mountain, Nevada. Our emphasis is on kinetically controlled sorption of radionuclides on mobile and immobile colloids. Three kinetic sorption models are considered for the sensitivity analysis: bilinear, Langmuir, and linear. Plutonium is assumed to be injected into the Yucca Mountain alluvial aquifer at a constant rate and follows a random stream tube to a monitoring boundary. The linear sorption model provides a reasonable upper bound on colloid-facilitated plutonium transport for the site-specific conditions. In the absence of colloid filtration and retardation, colloids enhance the plutonium discharge by a large factor over the situation without colloids. Exchange of plutonium between solution and reversibly attached colloids makes colloid retardation relatively ineffective at reducing colloid-facilitated transport except when the retardation factor is large. Irreversible removal of colloids (filtration) is more effective than retardation at reducing colloid-facilitated transport. For fixed filtration rate the degree of attenuation depends sensitively and nonmonotonically on the rate of plutonium desorption from colloids. These results emphasize the need for accurate measurements of rates of desorption from colloids as well as in situ studies of filtration of naturally occurring colloids. |
|
![](/images/icons/spacer.gif) |
![](/images/icons/spacer.gif) |
BACKGROUND DATA FILES |
|
![](../images/icons/sq.gif) |
Abstract![](/images/icons/spacer.gif) |
|
![](../images/buttons/download.very.flat.gif) |
|
|
|
Keywords
Hydrology, Groundwater transport, Hydrology, Stochastic processes, Hydrology, General or miscellaneous, colloids, radionuclides, subsurface transport |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
![](/images/icons/spacer.gif) |