|
Detailed Reference Information |
Agam (Ninari), N., Berliner, P.R., Zangvil, A. and Ben-Dor, E. (2004). Soil water evaporation during the dry season in an arid zone. Journal of Geophysical Research 109. doi: 10.1029/2004JD004802. issn: 0148-0227. |
|
The objective of this study was to assess the relative magnitude of latent heat flux density over a bare loess soil in the Negev desert throughout the dry season, during which the atmospheric models usually assume the lack of latent heat flux. The measurements were carried out in the northern Negev, Israel, over a bare loess soil, during nine 24-hour field campaigns throughout the dry season of 2002. In addition to a micrometeorological station that was set up in the research site, an improved microlysimeter was installed. The representativity of the microlysimeter was assessed by comparing its surface temperature to that of the surrounding surface using thermal images acquired on an hourly basis during several campaigns. It was found that although the water content of the uppermost soil is significantly lower than the wilting point, for which most of the commonly used meteorological models would assume no latent heat flux, the latter was ~20% of the net-radiation during the night and 10--15% during the day. It is therefore concluded that latent heat flux plays a major role in the dissipation of the net radiation during the dry season in the Negev desert. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Hydrology, Soil moisture, Hydrology, Water/energy interactions, Meteorology and Atmospheric Dynamics, Land/atmosphere interactions, energy partitioning, latent heat flux, bare soil |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|