EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Balasis et al. 2004
Balasis, G., Egbert, G.D. and Maus, S. (2004). Local time effects in satellite estimates of electromagnetic induction transfer functions. Geophysical Research Letters 31: doi: 10.1029/2004GL020147. issn: 0094-8276.
The current satellite magnetic missions offer new opportunities to determine the electrical conductivity of the Earth. However, satellites are nearly stationary in local time and therefore sample the inducing and induced fields quite differently than geomagnetic observatories, which rotate with the Earth. We show that estimates of induction transfer functions obtained from CHAMP magnetic data under the traditional symmetric magnetospheric ring current source (Y10) assumption depend systematically on local time, suggesting that source fields contain also a coherent non-axisymmetric component. An extended magnetospheric source model that incorporates a coherent non-axisymmetric quadrupole (Y21), and allows for Earth rotation qualitatively explains the observations. The current satellite magnetic missions offer new opportunities to determine the electrical conductivity of the Earth. However, satellites are nearly stationary in local time and therefore sample the inducing and induced fields quite differently than geomagnetic observatories, which rotate with the Earth. We show that estimates of induction transfer functions obtained from CHAMP magnetic data under the traditional symmetric magnetospheric ring current source (Y10) assumption depend systematically on local time, suggesting that source fields contain also a coherent non-axisymmetric component. An extended magnetospheric source model that incorporates a coherent non-axisymmetric quadrupole (Y21), and allows for Earth rotation qualitatively explains the observations.
BACKGROUND DATA FILES

Abstract

Keywords
Electromagnetics, Electromagnetic theory, Geomagnetism and Paleomagnetism, Geomagnetic induction, Magnetospheric Physics, Ring current, Mathematical Geophysics, Modeling
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit