|
Detailed Reference Information |
Shahnas, M.H. and Pysklywec, R.N. (2004). Anomalous topography in the western Atlantic caused by edge-driven convection. Geophysical Research Letters 31: doi: 10.1029/2004GL020882. issn: 0094-8276. |
|
The western Atlantic region contains a long-wavelength intraplate topography anomaly that is defined by the NE-SW trending Bermuda Rise and two adjacent topography lows. Using numerical experiments, we test the hypothesis that the anomalous topography may be the surface response to edge-driven convection. A primary edge-driven convection cell and secondary flow circulation develops at a modeled continent-ocean plate margin and induces subsidence at the continent-ocean margin, an off-shore peak/plateau of high topography on the ocean plate, and distal ocean plate subsidence. Unlike hot spots, the edge-driven convection cell and associated topography migrate with moving surface plates. The flow cell and wavelength of topography is broadened with continent-ward motion of the lithosphere relative to the mantle, whereas a migration in the ocean-ward direction suppresses the formation of the edge-driven convection cell and surface topography. The wavelength of observed anomalous topography in the western Atlantic and estimates of plate motions relative to a fixed hot spot reference frame are consistent with the former. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Tectonophysics, Dynamics of lithosphere and mantle—general, Tectonophysics, Dynamics, convection currents and mantle plumes, Tectonophysics, Planetary tectonics, Tectonophysics, Plate boundary—general, Information Related to Geographic Region, Atlantic Ocean |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|