EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Liu et al. 2004
Liu, F., Williams, M.W. and Caine, N. (2004). Source waters and flow paths in an alpine catchment, Colorado Front Range, United States. Water Resources Research 40: doi: 10.1029/2004WR003076. issn: 0043-1397.

Source waters and flow paths of streamflow draining high-elevation catchments of the Colorado Rocky Mountains were determined using isotopic and geochemical tracers during the 1996 snowmelt runoff season at two subcatchments of the Green Lakes Valley, Colorado Front Range. A two-component hydrograph separation using δ18O indicates that new water dominated (82 ¿ 6%) streamflow at the 8-ha Martinelli catchment and old water dominated (64 ¿ 2%) at the 225-ha Green Lake 4 (GL4) catchment. Snowmelt became isotopically enriched as the melt season progressed, complicating the interpretation of source water models. Thus old water may be underestimated if the temporal variation in δ18O of snowmelt is ignored or extrapolated from point measurements to the catchment. Two-component hydrograph separations for unreacted and reacted waters using a single geochemical tracer were not always meaningful. Three-component hydrograph separations using end-member mixing analysis indicated that subsurface flow contributed more than two thirds to the streamflow at both catchments. Talus fields contributed more than 40% of the total discharge during summer at the GL4 catchment. A conceptual model was established for flow generation based on these results. It is suggested that surface water and groundwater interactions are much more important to the quantity and quality of surface water in high-elevation catchments than previously thought.

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Chemistry of fresh water, Hydrology, Groundwater hydrology, Hydrology, Surface water quality, alpine catchment, end-member mixing analysis, flow paths, mixing model, source waters
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit