EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Mochida & Kawamura 2004
Mochida, M. and Kawamura, K. (2004). Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles. Journal of Geophysical Research 109: doi: 10.1029/2004JD004962. issn: 0148-0227.

Biomass burning, which is characterized by pyrolysis as well as vaporization and condensation of biomass constituents, is a significant source of atmospheric organic aerosols. In this study, hygroscopic properties of five organic compounds (levoglucosan, D-glucose, and vanillic, syringic, and 4-hydroxybenozoic acids), which are major pyrolysis products of wood, were measured using a tandem differential mobility analyzer. Levoglucosan, which is typically the most abundant species in wood burning aerosols, showed a significant hygroscopic growth for particles with a diameter of 100 nm. No efflorescence was observed under the measured relative humidity, and a supersaturated condition of levoglucosan-water particles was observed. The growth factors of levoglucosan are 1.08, 1.18, 1.23, and 1.38 at relative humidity (RH) of 60, 80, 85, and 90%, respectively. The measured hygroscopic curves are in general consistent with those estimated from ideal solution theory and Uniquac Functional-Group Activity Coefficient (UNIFAC) and Conductor-Like Screening Model for Real Solvent (COSMO-RS) methods. Significant hygroscopic growth was also observed for D-glucose, whose growth factor is quite similar to that of levoglucosan. However, three model pyrolysis products of lignin (i.e., vanillic-, syringic-, and 4-hydroxybenzoic acids) did not show any hygroscopic growth under the RH conditions up to 95%. On the basis of the organic composition of wood burning aerosols, the water absorption attributed to levoglucosan in wood burning aerosols is calculated to be up to 30% of the organic mass at 90% RH. This study demonstrates that oxygenated organics emitted from biomass burning could significantly enhance the hygroscopic properties of atmospheric aerosols.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801), Atmospheric Composition and Structure, Troposphere—composition and chemistry, Atmospheric Composition and Structure, Instruments and techniques, hygroscopic properties, biomass burning aerosol, tandem differential mobility analyzer
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit