|
Detailed Reference Information |
Goldan, P.D., Kuster, W.C., Williams, E., Murphy, P.C., Fehsenfeld, F.C. and Meagher, J. (2004). Nonmethane hydrocarbon and oxy hydrocarbon measurements during the 2002 New England Air Quality Study. Journal of Geophysical Research 109: doi: 10.1029/2003JD004455. issn: 0148-0227. |
|
Nonmethane hydrocarbons (NMHCs) and oxy hydrocarbons (oxy HCs) were measured aboard the National Oceanic and Atmospheric Administration research vessel Ronald H. Brown during the New England Air Quality Study from 13 July to 10 August 2002 by an online dual gas chromatographic instrument with two separate analytical columns equipped, respectively, with flame ionization and mass spectrometer detectors. Measurements, taken each half hour, included C2 to C10 alkanes, C2 to C5 alkenes, alcohols and ketones, C6 to C9 aromatics, and biogenic volatile compounds including six monoterpenes, isoprene and its immediate oxidation products methacrolein and methylvinylketone. All compounds have been categorized by their contribution to the OH loss rate calculated for 298K and 1 atm. Large temporal variability was observed for all compounds. Airflow from the Providence, Rhode Island/Boston, Massachusetts, urban corridor northeast to the New Hampshire coast was usually heavily laden with NMHCs and oxy HCs of anthropogenic origin. Comparison of specific compound ratios with automotive tunnel studies suggested that these were predominantly mobile source emissions. When such flow occurred during daylight hours, these urban plumes were accompanied by increases in ozone in the 80 to 120 ppbv range. About equally as often, much less chemically mature NMHC plumes were encountered near the New Hampshire coast. Ozone was titrated out of these latter plumes, and the unusually high mixing ratios of C4 and C5 alkenes suggested that their source was partly gasoline vapor release rather than mobile source emissions. In the New England coastal region explored, in spite of the large anthropogenic NMHC input during periods of offshore flow, OH loss with hydrocarbons was frequently dominated by compounds of biogenic origin. During periods of cleaner marine air inflow the OH loss rate was dominated by reaction with methane and with oxy HCs, predominantly acetone, formaldehyde, and acetaldehyde. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Pollution—urban and regional, Atmospheric Composition and Structure, Troposphere—composition and chemistry, Atmospheric Composition and Structure, Troposphere—constituent transport and chemistry, nonmethane hydrocarbons, oxy hydrocarbons, biogenic hydrocarbons |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|