EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Read et al. 2004
Read, P.L., Yamazaki, Y.H., Lewis, S.R., Williams, P.D., Miki-Yamazaki, K., Sommeria, J., Didelle, H. and Fincham, A. (2004). Jupiter's and Saturn's convectively driven banded jets in the laboratory. Geophysical Research Letters 31: doi: 10.1029/2004GL020106. issn: 0094-8276.

The banded patterns of cloud and wind are among the most striking features of the atmospheres of Jupiter and Saturn, but their dynamical origin remains poorly understood. Most approaches towards understanding zonation so far (also in the terrestrial oceans) have used highly idealized models to show that it might originate from dynamical anisotropy in a shallow turbulent fluid layer due to the planetary ¿-effect. Here we report the results of laboratory experiments, conducted on a 14-m diameter turntable, which quantitatively confirm that multiple zonal jets may indeed be generated and maintained by this mechanism in the presence of deep convection and a topographic ¿-effect. At the very small values of Ekman number (≤2 ¿ 10-5) and large local Reynolds numbers (≥2000, based on jet scales) achieved, the kinetic energy spectra suggest the presence of both energy-cascading and enstrophy-cascading inertial ranges in addition to the zonation near twice the Rhines wave number.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Planetary atmospheres (5405, 5407, 5409, 5704, 5705, 5707), Meteorology and Atmospheric Dynamics, Convective processes, Meteorology and Atmospheric Dynamics, Turbulence, Oceanography, Physical, Fronts and jets, Planetology, Fluid Planets, Atmospheres—structure and dynamics
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit