EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Perry et al. 2004
Perry, K.D., Cliff, S.S. and Jimenez-Cruz, M.P. (2004). Evidence for hygroscopic mineral dust particles from the Intercontinental Transport and Chemical Transformation Experiment. Journal of Geophysical Research 109: doi: 10.1029/2004JD004979. issn: 0148-0227.

Two collocated, eight-stage rotating drum impactors were deployed at Trinidad Head (California) during the spring of 2002 as part of the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) experiment. One of the samplers operated at ambient relative humidity while the other was operated at a relative humidity of 55%. The impaction substrates from these samplers were analyzed using synchrotron X-ray fluorescence (SXRF) to provide continuous measurements of the size-resolved aerosol elemental composition with 3-hour time resolution. The aerosol elemental composition data identified three significant mineral dust episodes near the beginning of the time series. The backward air mass trajectory calculations from the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and the PM10 to PM2.5 elemental mass ratios are consistent with the long-range transport of mineral dust from Asian sources. The data from the paired ambient relative humidity and low-relative-humidity samplers show that the aluminum, silicon, and iron elemental mass distributions are a function of relative humidity. In each case, the elemental mass distributions shifted toward smaller sizes as the relative humidity was reduced. This behavior indicates that the mineral dust transported from Asia to the west coast of the United States is somewhat hygroscopic upon its arrival. The hygroscopic nature of the aged mineral dust should increase its ability to nucleate cloud droplets (i.e., act as cloud condensation nuclei). Measurements of transported Asian mineral dust made at a high-elevation mountain site in Oregon (i.e., Crater Lake National Park) during the spring of 2002 show a strong correlation between the silicon and sulfur elemental mass concentrations. The ratio of calcium to sulfur makes it unlikely that this coarse sulfur is derived from gypsum (i.e., CaSO4). Instead, it indicates that the coarse mineral dust most likely accumulates sulfate coatings either near the source region or during transport across the Pacific Ocean.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801), Atmospheric Composition and Structure, Troposphere—constituent transport and chemistry, Atmospheric Composition and Structure, Cloud physics and chemistry, Atmospheric Composition and Structure, Pollution—urban and regional, Atmospheric Composition and Structure, Instruments and techniques, mineral dust, hygroscopic growth, long-range transport
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit