EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Streets et al. 2004
Streets, D.G., Bond, T.C., Lee, T. and Jang, C. (2004). On the future of carbonaceous aerosol emissions. Journal of Geophysical Research 109: doi: 10.1029/2004JD004902. issn: 0148-0227.

This paper presents the first model-based forecasts of future emissions of the primary carbonaceous aerosols, black carbon (BC) and organic carbon (OC). The forecasts build on a recent 1996 inventory of emissions that contains detailed fuel, technology, sector, and world-region specifications. The forecasts are driven by four IPCC scenarios, A1B, A2, B1, and B2, out to 2030 and 2050, incorporating not only changing patterns of fuel use but also technology development. Emissions from both energy generation and open biomass burning are included. We project that global BC emissions will decline from 8.0 Tg in 1996 to 5.3--7.3 Tg by 2030 and to 4.3--6.1 Tg by 2050, across the range of scenarios. We project that OC emissions will decline from 34 Tg in 1996 to 24--30 Tg by 2030 and to 21--28 Tg by 2050. The introduction of advanced technology with lower emission rates, as well as a shift away from the use of traditional solid fuels in the residential sector, more than offsets the increased combustion of fossil fuels worldwide. Environmental pressures and a diminishing demand for new agricultural land lead to a slow decline in the amount of open biomass burning. Although emissions of BC and OC are generally expected to decline around the world, some regions, particularly South America, northern Africa, the Middle East, South Asia, Southeast Asia, and Oceania, show increasing emissions in several scenarios. Particularly difficult to control are BC emissions from the transport sector, which increase under most scenarios. We expect that the BC/OC emission ratio for energy sources will rise from 0.5 to as much as 0.8, signifying a shift toward net warming of the climate system due to carbonaceous aerosols. When biomass burning is included, however, the BC/OC emission ratios are for the most part invariant across scenarios at about 0.2.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801), Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Troposphere—composition and chemistry, Atmospheric Composition and Structure, Evolution of the atmosphere, aerosols, emissions, projections, global, black carbon, organic carbon
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit