EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Zhang et al. 2005
Zhang, Q., Canagaratna, M.R., Jayne, J.T., Worsnop, D.R. and Jimenez, J. (2005). Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes. Journal of Geophysical Research 110: doi: 10.1029/2004JD004649. issn: 0148-0227.

An Aerodyne aerosol mass spectrometer (AMS) was deployed at the Pittsburgh Environmental Protection Agency Supersite from 7 to 22 September 2002 as part of the Pittsburgh Air Quality Study (PAQS). The main objectives of this deployment were to characterize the concentrations, size distributions, and temporal variations of nonrefractory (NR) chemical species in submicron particles (approximately PM1) and to further develop and evaluate the AMS. Reasonably good agreement was observed on particle concentrations, composition, and size distributions between the AMS data and measurements from collocated instruments (given the difference between the PM1 and PM2.5 size cuts), including TEOM, semicontinuous sulfate, 2-hour- and 24-hour-averaged organic carbon, SMPS, 4-hour-averaged ammonium, and micro-orifice uniform deposit impactor. Total NR-PM1 mass concentration in Pittsburgh accumulates over periods of several days punctuated with rapid cleaning due to rain or air mass changes. Sulfate and organics are the major NR-PM1 components while the concentrations of nitrate and chloride are generally low. Significant amounts of ammonium, which most of the time are consistent with sulfate present as ammonium sulfate, are also present in particles. However, there are periods when the aerosols are relatively acidic and more than 50% of sulfate is estimated to be in the form of ammonium bisulfate. No major enhancement of the organic concentration is observed during these acidic periods, which suggests that acid-catalyzed SOA formation was not an important process during this study. Size distributions of particulate sulfate, ammonium, organics, and nitrate vary on timescales of hours to days, showing unimodal, bimodal and even trimodal characteristics. The accumulation mode (peaking around 350--600 nm in vacuum aerodynamic diameter for the mass distributions) and the ultrafine mode (<100 nm) are observed most frequently. The accumulation mode is dominated by sulfate that appears to be internally mixed with oxidized organics, while combustion-emitted organics are often the main component of the ultrafine particles (except during nucleation events). The ultrafine-mode organic aerosols are mainly associated with combustion sources (likely traffic).

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801, 4906), Atmospheric Composition and Structure, Pollution, urban and regional (0305, 0478, 4251), Atmospheric Composition and Structure, Troposphere, composition and chemistry, Atmospheric Composition and Structure, Instruments and techniques, aerosol climatology, fine particles, aerosol mass spectrometer, AMS, Aerodyne, size distributions, aerosol dynamics
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit