|
Detailed Reference Information |
Griffin, R.J., Dabdub, D. and Seinfeld, J.H. (2005). Development and initial evaluation of a dynamic species-resolved model for gas phase chemistry and size-resolved gas/particle partitioning associated with secondary organic aerosol formation. Journal of Geophysical Research 110: doi: 10.1029/2004JD005219. issn: 0148-0227. |
|
A module for predicting the dynamic evolution of the gas phase species and the aerosol size and composition distribution during formation of secondary organic aerosol (SOA) is presented. The module is based on the inorganic gas-aerosol equilibrium model Simulating the Composition of Atmospheric Particles at Equilibrium 2 (SCAPE2) and updated versions of the lumped Caltech Atmospheric Chemistry Mechanism (CACM) and the Model to Predict the Multiphase Partitioning of Organics (MPMPO). The aerosol phase generally consists of an organic phase and an aqueous phase containing dissolved inorganic and organic components. Simulations are presented in which a single salt (either dry or aqueous), a volatile organic compound, and oxides of nitrogen undergo photo-oxidation to form SOA. Predicted SOA mass yields for classes of aromatic and biogenic hydrocarbons exhibit the proper qualitative behavior when compared to laboratory chamber data. Inasmuch as it is currently not possible to represent explicitly aerosol phase chemistry involving condensed products of gas phase oxidation, the present model can be viewed as the most detailed SOA formation model available yet will undergo continued improvement in the future. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801, 4906), Atmospheric Composition and Structure, Pollution, urban and regional (0305, 0478, 4251), Atmospheric Composition and Structure, Troposphere, composition and chemistry, particulate matter, secondary organic aerosol |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|