|
Detailed Reference Information |
Liu, H., Pinker, R.T. and Holben, B.N. (2005). A global view of aerosols from merged transport models, satellite, and ground observations. Journal of Geophysical Research 110: doi: 10.1029/2004JD004695. issn: 0148-0227. |
|
Growing recognition of the importance of natural and anthropogenic aerosols in climate research led to numerous efforts to obtain information on aerosols based on model simulations, satellite remote sensing, and ground observations. This study describes an approach to combine information from independent sources that complement each other in their capabilities to achieve a global characterization of monthly mean clear-sky daytime aerosol optical depth. The following sources of information have been used: simulations from the Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model; retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra satellite; and measurements from the Aerosol Robotic Network (AERONET). Leading empirical orthogonal functions (EOFs) are used to represent the significant variation signals from model and satellite results; the EOFs are fitted to the ground observations to propagate the AERONET information at a global scale. The methodology is implemented with a 2-year time record when collocated data from all three sources are available. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801, 4906), Biogeosciences, Computational methods and data processing, Biogeosciences, Data sets, Biogeosciences, Remote sensing, aerosols, aerosol optical depth, global aerosols |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|