EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
d'Alessio et al. 2005
d'Alessio, M.A., Johanson, I.A., Bürgmann, R., Schmidt, D.A. and Murray, M.H. (2005). Slicing up the San Francisco Bay Area: Block kinematics and fault slip rates from GPS-derived surface velocities. Journal of Geophysical Research 110: doi: 10.1029/2004JB003496. issn: 0148-0227.

Observations of surface deformation allow us to determine the kinematics of faults in the San Francisco Bay Area. We present the Bay Area velocity unification (B$bar {rm A}$V$bar {rm U}$, bay view), a compilation of over 200 horizontal surface velocities computed from campaign-style and continuous Global Positioning System (GPS) observations from 1993 to 2003. We interpret this interseismic velocity field using a three-dimensional block model to determine the relative contributions of block motion, elastic strain accumulation, and shallow aseismic creep. The total relative motion between the Pacific plate and the rigid Sierra Nevada/Great Valley (SNGV) microplate is 37.9 ¿ 0.6 mm yr-1 directed toward N30.4¿W ¿ 0.8¿ at San Francisco (¿2σ). Fault slip rates from our preferred model are typically within the error bounds of geologic estimates but provide a better fit to geodetic data (notable right-lateral slip rates in mm yr-1: San Gregorio fault, 2.4 ¿ 1.0; West Napa fault, 4.0 ¿ 3.0; zone of faulting along the eastern margin of the Coast Range, 5.4 ¿ 1.0; and Mount Diablo thrust, 3.9 ¿ 1.0 of reverse slip and 4.0 ¿ 0.2 of right-lateral strike slip). Slip on the northern Calaveras is partitioned between both the West Napa and Concord/Green Valley fault systems. The total convergence across the Bay Area is negligible. Poles of rotation for Bay Area blocks progress systematically from the North America-Pacific to North America-SNGV poles. The resulting present-day relative motion cannot explain the strike of most Bay Area faults, but fault strike does loosely correlate with inferred plate motions at the time each fault initiated.

BACKGROUND DATA FILES

Abstract

Keywords
Geodesy and Gravity, Space geodetic surveys, Geodesy and Gravity, Seismic cycle related deformations (6924, 7209, 7223, 7230), Geodesy and Gravity, Tectonic deformation, Tectonophysics, Continental margins, transform, Tectonophysics, Plate motions, present and recent, GPS, block modeling, San Francisco Bay Area
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit