EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Qian et al. 2005
Qian, S.S., Reckhow, K.H., Zhai, J. and McMahon, G. (2005). Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach. Water Resources Research 41. doi: 10.1029/2005WR003986. issn: 0043-1397.

A Bayesian nonlinear regression modeling method is introduced and compared with the least squares method for modeling nutrient loads in stream networks. The objective of the study is to better model spatial correlation in river basin hydrology and land use for improving the model as a forecasting tool. The Bayesian modeling approach is introduced in three steps, each with a more complicated model and data error structure. The approach is illustrated using a data set from three large river basins in eastern North Carolina. Results indicate that the Bayesian model better accounts for model and data uncertainties than does the conventional least squares approach. Applications of the Bayesian models for ambient water quality standards compliance and TMDL assessment are discussed.

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Modeling, Hydrology, Model calibration, Bayesian statistics, MCMC, SPARROW, watershed modeling
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit