 |
Detailed Reference Information |
Caldeira, K. and Wickett, M.E. (2005). Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research 110: doi: 10.1029/2004JC002671. issn: 0148-0227. |
|
We present ocean chemistry calculations based on ocean general circulation model simulations of atmospheric CO2 emission, stabilization of atmospheric CO2 content, and stabilization of atmospheric CO2 achieved in total or in part by injection of CO2 to the deep ocean interior. Our goal is to provide first-order results from various CO2 pathways, allowing correspondence with studies of marine biological effects of added CO2. Parts of the Southern Ocean become undersaturated with respect to aragonite under the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) A1, A2, B1, and B2 emission pathways and the WRE pathways that stabilize CO2 at 650 ppm or above. Cumulative atmospheric emission of 5000 Pg C produces aragonite undersaturation in most of the surface ocean; 10,000 Pg C also produces calcite undersaturation in most of the surface ocean. Stabilization of atmospheric CO2 at 450 ppm produces both calcite and aragonite undersaturation in most of the deep ocean. The simulated SRES pathways produce global surface pH reductions of ~0.3--0.5 units by year 2100. Approximately this same reduction is produced by WRE650 and WRE1000 stabilization scenarios and by the 1250 Pg C emission scenario by year 2300. Atmospheric emissions of 5000 Pg C and 20,000 Pg C produce global surface pH reductions of 0.8 and 1.4 units, respectively, by year 2300. Simulations of deep ocean CO2 injection as an alternative to atmospheric release show greater chemical impact on the deep ocean as the price for having less impact on the surface ocean and climate. Changes in ocean chemistry of the magnitude shown are likely to be biologically significant. |
|
 |
 |
BACKGROUND DATA FILES |
|
 |
Abstract |
|
 |
|
|
|
Keywords
Global Change, Impacts of global change, Global Change, Oceans (1616, 3305, 4215, 4513), Oceanography, General, Physical and chemical properties of seawater, Oceanography, Biological and Chemical, Biogeochemical cycles, processes, and modeling (0412, 0414, 0793, 1615, 4912), Oceanography, Biological and Chemical, Geochemistry, ocean chemistry, CO2 emissions, ocean modeling, pH, carbonate saturation |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
 |