EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Watanabe & Takahashi 2005
Watanabe, S. and Takahashi, M. (2005). Kelvin waves and ozone Kelvin waves in the quasi-biennial oscillation and semiannual oscillation: A simulation by a high-resolution chemistry-coupled general circulation model. Journal of Geophysical Research 110: doi: 10.1029/2004JD005424. issn: 0148-0227.

Equatorial Kelvin waves and ozone Kelvin waves were simulated by a T63L250 chemistry-coupled general circulation model with a high vertical resolution (300 m). The model produces a realistic quasi-biennial oscillation (QBO) and a semiannual oscillation (SAO) in the equatorial stratosphere. The QBO has a period slightly longer than 2 years, and the SAO shows rapid reversals from westerly to easterly regimes and gradual descents of westerlies. Results for the zonal wave number 1 slow and fast Kelvin waves are discussed. Structure of the waves and phase relationships between temperature and ozone perturbations coincide well with satellite observations made by LIMS, CLAES, and MLS. They are generally in phase (antiphase) in the lower (upper) stratosphere as theoretically expected. The fast Kelvin waves in the temperature and ozone are dominant in the upper stratosphere because the slow Kelvin waves are effectively filtered by the QBO westerly. In this simulation, the fast Kelvin waves encounter their critical levels in the upper stratosphere when zonal asymmetry of the SAO westerly is enhanced by an intrusion of the extratropical planetary waves. In addition to the critical level filtering effect, modulations of wave properties by background winds are evident near easterly and westerly shears associated with the QBO and SAO. Enhancement of wave amplitude in the QBO westerly shear is well coincident with radiosonde observations. Increase/decrease of vertical wavelength in the QBO easterly/westerly is obvious in this simulation, which is consistent with the linear wave theory. Shortening of wave period due to the descending QBO westerly shear zone is demonstrated for the first time. Moreover, dominant periods during the QBO westerly phase are longer than those during the QBO easterly phase for both the slow and fast Kelvin waves.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Middle atmosphere, constituent transport and chemistry, Atmospheric Processes, Middle atmosphere dynamics (0341, 0342), Atmospheric Processes, Global climate models (1626, 4928), Kelvin waves, ozone, GCM
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit