|
Detailed Reference Information |
Cole, J.N.S., Barker, H.W., O'Hirok, W., Clothiaux, E.E., Khairoutdinov, M.F. and Randall, D.A. (2005). Atmospheric radiative transfer through global arrays of 2D clouds. Geophysical Research Letters 32: doi: 10.1029/2005GL023329. issn: 0094-8276. |
|
Shortwave and longwave 2D radiative transfer calculations were performed using Monte Carlo radiative transfer models and output from a global climate model (GCM) that employed, in each of its columns, a 2D cloud system-resolving model (CSRM) with a horizontal grid-spacing Δx of 4 km. CSRM output were sampled every 9 hours for December 2000. Radiative fluxes were averaged to the GCM's grid. Monthly-mean top of atmosphere (TOA) shortwave flux differences between 2D radiative transfer and the Independent Column Approximation (ICA) are at most 5 W m-2 in the tropics with a zonal-average of 1.5 W m-2. These differences are 2 to 10 times smaller than those stemming from the maximum-random overlap model and neglect of horizontal variability of cloud. Corresponding longwave differences are approximately 3 times smaller than their shortwave counterparts. Use of CSRM data with Δx < 4 km may roughly double the reported differences between 2D and ICA TOA SW fluxes. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Cloud/radiation interaction, Atmospheric Processes, Global climate models (1626, 4928), Atmospheric Processes, Radiative processes |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|