EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Anders & Chrysikopoulos 2005
Anders, R. and Chrysikopoulos, C.V. (2005). Virus fate and transport during artificial recharge with recycled water. Water Resources Research 41: doi: 10.1029/2004WR003419. issn: 0043-1397.

A field-scale experiment was conducted at a research site using bacterial viruses (bacteriophage) MS2 and PRD1 as surrogates for human viruses, bromide as a conservative tracer, and tertiary-treated municipal wastewater (recycled water) to investigate the fate and transport of viruses during artificial recharge. Observed virus concentrations were fitted using a mathematical model that simulates virus transport in one-dimensional, homogeneous, water-saturated porous media accounting for virus sorption (or filtration), virus inactivation, and time-dependent source concentration. The fitted time-dependent clogging rate constants were used to estimate the collision efficiencies for bacteriophage MS2 and PRD1 during vertical fully saturated flow. Furthermore, the corresponding time-dependent collision efficiencies for both bacteriophage asymptotically reached similar values at the various sampling locations. These results can be used to develop an optimal management scenario to maximize the amount of recycled water that can be applied to the spreading grounds while still maintaining favorable attachment conditions for virus removal.

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Groundwater hydrology, Hydrology, Groundwater quality, Hydrology, Groundwater transport, Hydrology, Infiltration, artificial recharge, bacteriophage, collision efficiency, inactivation, mathematical modeling, recycled water, virus transport
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit