EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Wilson et al. 2005
Wilson, R., Dalaudier, F. and Bertin, F. (2005). Estimation of the turbulent heat flux in the lower stratosphere from high resolution radar measurements. Geophysical Research Letters 32: doi: 10.1029/2005GL024124. issn: 0094-8276.

Two estimates of the turbulent diffusivity (i.e., the heat flux per unit gradient) in the lower stratosphere are inferred from high-resolution radar measurements and compared. First, the local heat flux (within the turbulent patches) is evaluated from the dissipation rate of turbulent kinetic energy $epsilon$k under the basic assumptions of local homogeneity and stationarity of the fluctuations. We then estimated the effective heat flux per unit gradient as the time-averaged flux for a given altitude during the measurement period (six hours), taking into account the observed turbulence intermittence. The time-averaged heat flux per unit gradient is found to be ~2 ¿ 10-2 m2s-1 typically, in good agreement with some of the weakest estimates of diffusivity already published. The observed ratio between the local and the time averaged fluxes can reach about one order of magnitude. This last result stresses the fact that turbulent diffusivity inferred from MST radars measurements cannot generally be directly interpreted as an effective diffusivity, since radar estimates, in most cases, do not take into account the turbulence intermittence.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Instruments and techniques, Atmospheric Processes, Turbulence, Radio Science, Radar atmospheric physics
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit