EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Strangeway & Johnson 1983
Strangeway, R.J. and Johnson, R.G. (1983). On the injection boundary model and dispersing ion signatures at near-geosynchronous altitudes. Geophysical Research Letters 10: doi: 10.1029/GL010i007p00549. issn: 0094-8276.

A simple particle drift model is used to investigate the applicability of the injection boundary concept to the ion dispersion event observed on March 22 (day 81), 1979. The model consists of a dipole magnetic field with a uniform cross-tail electric field plus a corotation field. A full spectrum of particles from 100 eV to 32 keV is injected at the Kp=6-- Mauk and McIlwain injection boundary at the time of substorm onset on this day (1100 UT). A new approach is presented for displaying the model-produced ion drift trajectories to make the large scale spatial characteristics of the evolving energy distributions easier to envision and to facilitate the comparison of the model results with experimental observations. The resultant prediction for the dispersion signature is compared with Scatha mass spectrometer measurements, and a 2.0 kV/Re cross-tail convection electric field is found to give a good fit to the observed dispersion signature. It is determined that for this particular event, injection only at that portion of the injection boundary close to 1800 local time is required to produce the dispersion curve.

BACKGROUND DATA FILES

Abstract

Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit