EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Dunne et al. 2005
Dunne, J.P., Armstrong, R.A., Gnanadesikan, A. and Sarmiento, J.L. (2005). Empirical and mechanistic models for the particle export ratio. Global Biogeochemical Cycles 19: doi: 10.1029/2004GB002390. issn: 0886-6236.

We present new empirical and mechanistic models for predicting the export of organic carbon out of the surface ocean by sinking particles. To calibrate these models, we have compiled a synthesis of field observations related to ecosystem size structure, primary production and particle export from around the globe. The empirical model captures 61% of the observed variance in the ratio of particle export to primary production (the pe ratio) using sea-surface temperature and chlorophyll concentrations (or primary productivity) as predictor variables. To describe the mechanisms responsible for pe-ratio variability, we present size-based formulations of phytoplankton grazing and sinking particle export, combining them into an alternative, mechanistic model. The formulation of grazing dynamics, using simple power laws as closure terms for small and large phytoplankton, reproduces 74% of the observed variability in phytoplankton community composition wherein large phytoplankton augment small ones as production increases. The formulation for sinking particle export partitions a temperature-dependent fraction of small and large phytoplankton grazing into sinking detritus. The mechanistic model also captures 61% of the observed variance in pe ratio, with large phytoplankton in high biomass and relatively cold regions leading to more efficient export. In this model, variability in primary productivity results in a biomass-modulated switch between small and large phytoplankton pathways.

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, Biological and Chemical, Biogeochemical cycles, processes, and modeling (0412, 0414, 0793, 1615, 4912), Oceanography, Biological and Chemical, Carbon cycling, Oceanography, Biological and Chemical, Ecosystems, structure, dynamics, and modeling, Oceanography, Biological and Chemical, Food webs, structure, and dynamics, Oceanography, Biological and Chemical, Nutrients and nutrient cycling (0470, 1050), export production, particle export, sinking efficiency
Journal
Global Biogeochemical Cycles
http://www.agu.org/journals/gb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit