EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Williams & Muxworthy 2006
Williams, W. and Muxworthy, A.R. (2006). Understanding viscous magnetization of multidomain magnetite. Journal of Geophysical Research 111: doi: 10.1029/2005JB003695. issn: 0148-0227.

Viscous magnetization (VM) and viscous remanent magnetization (VRM) have been measured, as a function of temperature, between room temperature and the Curie temperature using a suite of well-characterized synthetic and natural multidomain (MD) magnetite samples. Particular attention was given to possible diffusion aftereffects such as dislocation creep (stress relaxation) and disaccommodation (vacancy and ionic reordering) and their contribution to viscous behavior in what has been commonly thought of as a purely thermal fluctuation process. Dislocation creep was examined by measuring viscosity before and after annealing. Annealing was found to reduce the non-log(t) behavior, where t is time. Non-log(t) behavior has been associated with diffusion aftereffects, suggesting that these are a major contributor to viscosity and (de)magnetization processes in MD samples. The positive curvature of the non-log(t) acquisition processes indicates that dislocation creep dominates over disaccommodation. This does not imply that VM and VRM are due solely to dislocation creep, but rather that VRM and VM reflect a number of unrelated temperature-dependent processes, primarily thermal fluctuations and dislocation creep. This is the first time that dislocation creep has been directly identified as contributing to viscosity at temperature. These findings will have particular implications for paleointensity determinations, as on heating a sample, its dislocation structure may relax, giving rise to demagnetizations not associated with thermal fluctuations. This will lead to incorrect intensity estimates. If no heating is performed on a geological specimen, then it is very likely that laboratory timescale stress relaxation processes will have already occurred in situ.

BACKGROUND DATA FILES

Abstract

Keywords
Geomagnetism and Paleomagnetism, Paleointensity, Geomagnetism and Paleomagnetism, Paleomagnetic secular variation, Geomagnetism and Paleomagnetism, Paleomagnetism applied to tectonics, regional, global, Geomagnetism and Paleomagnetism, Remagnetization, Geomagnetism and Paleomagnetism, Rock and mineral magnetism
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit