EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Koch et al. 2006
Koch, D., Schmidt, G.A. and Field, C.V. (2006). Sulfur, sea salt, and radionuclide aerosols in GISS ModelE. Journal of Geophysical Research 111: doi: 10.1029/2004JD005550. issn: 0148-0227.

We simulate a suite of aerosols in the new GISS ModelE GCM: present-day sulfur species and the natural species sea salt, radionuclides 7Be (stratospheric source), and 210Pb (derived from 222Rn from soils). The natural species are used to test the model and to help diagnose the anthropogenic sulfur species. Model improvements over previous versions include increased vertical resolution, addition of a stratiform dissolved species budget (DSB), better tracer coupling to the boundary layer, and an improved relative humidity-dependent radiative scheme. The DSB reduces the loads of most soluble species since it increases stratiform precipitation scavenging. We compare the model with extensive surface and aircraft concentration measurements in the troposphere and stratosphere. We compare three different formulations of the 222Rn emissions and find that a scheme with reduced radon flux at high latitudes of the Northern Hemisphere for all seasons gives the best 210Pb results. Although the 222Rn emissions appear to be approximately the right order of magnitude, model 210Pb is too large. Conversely, our 7Be source is too small (since concentrations in the upper troposphere and stratosphere are deficient), while the 7Be surface concentrations are as observed. These radionuclide results suggests that model scavenging (by moist convection) is deficient. Our new model uses increased natural sulfur emissions; however, the DSB causes sulfate to be generally less than observed and indicates a need for additional sulfur oxidation mechanisms. Model radiative forcing for sulfate and sea salt are -0.54 and -1.1 W m-2, respectively. The anthropogenic sulfate forcing is -0.25 W m-2, less than the -0.68 W m-2 in our previous model mainly owing to an 18% decrease in industrial emissions.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801, 4906), Atmospheric Composition and Structure, Troposphere, constituent transport and chemistry, Atmospheric Composition and Structure, Troposphere, composition and chemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit