EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Frankenberg et al. 2006
Frankenberg, C., Meirink, J.F., Bergamaschi, P., Goede, A.P.H., Heimann, M., Körner, S., Platt, U., van Weele, M. and Wagner, T. (2006). Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004. Journal of Geophysical Research 111: doi: 10.1029/2005JD006235. issn: 0148-0227.

The UV/Vis/near infrared spectrometer SCIAMACHY on board the European ENVISAT satellite enables total column retrieval of atmospheric methane with high sensitivity to the lower troposphere. The vertical column density of methane is converted to column averaged mixing ratio by using carbon dioxide retrievals as proxy for the probed atmospheric column. For this purpose, we apply concurrent total column measurements of CO2 in combination with modeled column-averaged CO2 mixing ratios. Possible systematic errors are discussed in detail while the precision error is 1.8% on average. This paper focuses on methane retrievals from January 2003 through December 2004. The measurements with global coverage over continents are compared with model results from the chemistry--transport model TM4. In the retrievals, the north-south gradient as well as regions with enhanced methane levels can be clearly identified. The highest abundances are found in the Red Basin of China, followed by northern South America, the Gangetic plains of India and central parts of Africa. Especially the abundances in northern South America and the Red Basin are generally higher than modeled. Further, we present the seasonal variations within the investigated time period. Peak values in Asia due to rice emissions are observed from August through October. We expand earlier investigations that suggest underestimated emissions in the tropics. It is shown that these underestimations show a seasonal behavior that peaks from August through December. The global measurements may be used for inverse modeling and are thus an important step towards better quantification of the methane budget.

BACKGROUND DATA FILES

Abstract

Keywords
Global Change, Remote sensing, Global Change, Atmosphere (0315, 0325), Global Change, Biogeochemical cycles, processes, and modeling (0412, 0414, 0793, 4805, 4912), Global Change, Land/atmosphere interactions (1218, 1843, 3322), Atmospheric Composition and Structure, Troposphere, composition and chemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit