|
Detailed Reference Information |
Flores, A.N., Bledsoe, B.P., Cuhaciyan, C.O. and Wohl, E.E. (2006). Channel-reach morphology dependence on energy, scale, and hydroclimatic processes with implications for prediction using geospatial data. Water Resources Research 42: doi: 10.1029/2005WR004226. issn: 0043-1397. |
|
Channel types found in mountain drainages occupy characteristic but intergrading ranges of bed slope that reflect a dynamic balance between erosive energy and channel boundary resistance. Using a classification and regression tree (CART) modeling approach, we demonstrate that drainage area scaling of channel slopes provides better discrimination of these forms than slope alone among supply- and capacity-limited sites. Analysis of 270 stream reaches in the western United States exhibiting four common mountain channel types reveals that these types exist within relatively discrete ranges of an index of specific stream power. We also demonstrate associations among regional interannual precipitation variability, discharge distribution skewness, and means of the specific stream power index of step-pool channels. Finally, we discuss a conceptual methodology for predicting ecologically relevant morphologic units from digital elevation models at the network scale based on the finding that channel types do not exhibit equal energy dissipation. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Hydrology, Geographic Information Systems (GIS), Hydrology, Geomorphology, fluvial, Hydrology, Hydroclimatology, Hydrology, River channels (0483, 0744) |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|