EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Uno et al. 2006
Uno, I., Wang, Z., Chiba, M., Chun, Y.S., Gong, S.L., Hara, Y., Jung, E., Lee, S.-S., Liu, M., Mikami, M., Music, S., Nickovic, S., Satake, S., Shao, Y., Song, Z., Sugimoto, N., Tanaka, T. and Westphal, D.L. (2006). Dust model intercomparison (DMIP) study over Asia: Overview. Journal of Geophysical Research 111. doi: 10.1029/2005JD006575. issn: 0148-0227.

An intercomparison study involving eight dust emission/transport models over Asia (DMIP) has been completed. Participating dust models utilize a variety of dust emission schemes, horizontal and vertical resolutions, numerical methods, and different meteorological models. Two huge dust episodes occurred in spring 2002 and were used for the DMIP study. Meteorological parameters, dust emission flux and dust concentration (diameter < 20 ¿m) are compared within the same domain on the basis of PM and NIES lidar measurements. We found that modeled dust concentrations between the 25% and 75% percentiles generally agreed with the PM observations. The model results correctly captured the major dust onset and cessation timing at each observation site. However, the maximum concentration of each model was 2--4 times different. Dust emission fluxes from the Taklimakan Desert and Mongolia differ immensely among the models, indicating that the dust source allocation scheme over these regions differs greatly among the various modeling groups. This suggests the measurements of dust flux and accurate updated land use information are important to improve the models over these regions. The dust vertical concentration profile at Beijing, China, and Nagasaki, Japan, has a large scatter (more than two times different) among the models. For Beijing, the scaled dust profile has a quite similar vertical profile and shows relatively good agreement with the lidar extinction profile. However, for Nagasaki, the scaled dust profiles do not agree. These results indicate that modeling of dust transport and removal processes between China and Japan is another important issue in improving dust modeling.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801, 4906), Atmospheric Composition and Structure, Cloud/radiation interaction, Atmospheric Composition and Structure, Troposphere, constituent transport and chemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit