EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
New et al. 2006
New, M., Hewitson, B., Stephenson, D.B., Tsiga, A., Kruger, A., Manhique, A., Gomez, B., Coelho, C.A.S., Masisi, D.N., Kululanga, E., Mbambalala, E., Adesina, F., Saleh, H., Kanyanga, J., Adosi, J., Bulane, L., Fortunata, L., Mdoka, M.L. and Lajoie, R. (2006). Evidence of trends in daily climate extremes over southern and west Africa. Journal of Geophysical Research 111: doi: 10.1029/2005JD006289. issn: 0148-0227.

There has been a paucity of information on trends in daily climate and climate extremes, especially from developing countries. We report the results of the analysis of daily temperature (maximum and minimum) and precipitation data from 14 south and west African countries over the period 1961--2000. Data were subject to quality control and processing into indices of climate extremes for release to the global community. Temperature extremes show patterns consistent with warming over most of the regions analyzed, with a large proportion of stations showing statistically significant trends for all temperature indices. Over 1961 to 2000, the regionally averaged occurrence of extreme cold (fifth percentile) days and nights has decreased by -3.7 and -6.0 days/decade, respectively. Over the same period, the occurrence of extreme hot (95th percentile) days and nights has increased by 8.2 and 8.6 days/decade, respectively. The average duration of warm (cold) has increased (decreased) by 2.4 (0.5) days/decade and warm spells. Overall, it appears that the hot tails of the distributions of daily maximum temperature have changed more than the cold tails; for minimum temperatures, hot tails show greater changes in the NW of the region, while cold tails have changed more in the SE and east. The diurnal temperature range (DTR) does not exhibit a consistent trend across the region, with many neighboring stations showing opposite trends. However, the DTR shows consistent increases in a zone across Namibia, Botswana, Zambia, and Mozambique, coinciding with more rapid increases in maximum temperature than minimum temperature extremes. Most precipitation indices do not exhibit consistent or statistically significant trends across the region. Regionally averaged total precipitation has decreased but is not statistically significant. At the same time, there has been a statistically significant increase in regionally averaged daily rainfall intensity and dry spell duration. While the majority of stations also show increasing trends for these two indices, only a few of these are statistically significant. There are increasing trends in regionally averaged rainfall on extreme precipitation days and in maximum annual 5-day and 1-day rainfall, but only trends for the latter are statistically significant.

BACKGROUND DATA FILES

Abstract

Keywords
Global Change, Regional climate change, Global Change, Atmosphere (0315, 0325), Global Change, Climate variability (1635, 3305, 3309, 4215, 4513), Global Change, Instruments and techniques
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit