EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Kienast et al. 2006
Kienast, S.S., Kienast, M., Jaccard, S., Calvert, S.E. and François, R. (2006). Testing the silica leakage hypothesis with sedimentary opal records from the eastern equatorial Pacific over the last 150 kyrs. Geophysical Research Letters 33: doi: 10.1029/2006GL026651. issn: 0094-8276.

We have measured 230Th-normalized opal fluxes in several cores from the eastern equatorial Pacific (EEP) to test the validity of the "silica leakage" hypothesis, which purports that redistribution of silicic acid from the Southern Ocean to the low latitudes was responsible for a significant portion of the reduction in atmospheric carbon dioxide (CO2) during the last glacial period. The silica leakage hypothesis predicts higher opal fluxes in the EEP and lower opal fluxes in the Southern Ocean during periods of low atmospheric CO2. These predictions are not borne by the sedimentary record during glacial oxygen isotope stage 2 (OIS 2, 13--27 kyrs B.P.). However, we find a prominent opal flux maximum in the EEP in the middle of OIS 3 (ca. 40--60 kyrs BP) coinciding with low opal fluxes in several cores from the subantarctic zone. This observation is consistent with silica leakage from the Southern Ocean to the equatorial upwelling region during OIS 3, when both low dust flux and extended sea ice could have contributed to limiting diatom productivity in the Southern Ocean. Since this event is not associated with a clear minimum in the Vostok ice record of CO2, its impact on atmospheric CO2 appears to be small.

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, Biological and Chemical, Nutrients and nutrient cycling (0470, 1050), Paleoceanography (0473, 3344), Paleoceanography, Biogeochemical cycles, processes, and modeling (0412, 0414, 0793, 1615, 4805), Paleoceanography, Glacial
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit