EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Ganguly et al. 2006
Ganguly, D., Jayaraman, A., Rajesh, T.A. and Gadhavi, H. (2006). Wintertime aerosol properties during foggy and nonfoggy days over urban center Delhi and their implications for shortwave radiative forcing. Journal of Geophysical Research 111: doi: 10.1029/2005JD007029. issn: 0148-0227.

We present results from complimentary measurements of physical and optical properties of aerosols carried out at Delhi, as part of the Indian Space Research Organization Geosphere Biosphere Programme's Land Campaign II in December 2004. For the first time we unravel ground truth values of several radiatively important aerosol parameters such as their wavelength dependency in absorption, scattering behavior, single-scattering albedo, number size distribution, and vertical distribution in the atmosphere from this polluted megacity in south Asia. Interesting features are observed in the behavior of aerosol parameters under intermittent foggy, hazy, and clear-sky conditions prevalent during the campaign. All aerosol parameters exhibited a large distribution in their values, with variabilities being particularly higher on hazy and foggy days. The average clear-sky aerosol optical depth (AOD) value is 0.91 ¿ 0.48, which is higher than the AOD value reported for most other cities in India during this season of the year. Increases in AOD on hazy and foggy days are found to be spectrally nonuniform. The percentage increase in AOD at shorter wavelengths was higher on hazy days compared to clear days. Diurnally averaged BC mass concentration varied from a low of 15 ¿g/m3 during clear days to a high of about 65 ¿g/m3 on hazy days. The wavelength dependency of aerosol absorption shows signatures of the presence of a significant amount of absorbing aerosols produced from biofuel/biomass burning. Single-scattering albedo at 525 nm is found to vary between 0.6 and 0.8 with an average value of 0.68 for the entire period. Lidar observations reveal that during a fog event there is a subsidence of aerosols to an extremely dense and shallow atmospheric layer of less than 200 m height from the surface. The presence of an aerosol layer at elevated altitudes is also detected. All the results are combined and used for estimating aerosol radiative forcing using a discrete ordinate radiative transfer model. We find a large negative forcing at the surface level in the range of -40 to -86 W/m2, while forcing at the top of the atmosphere varied between -2 and +3 W/m2.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801, 4906), Atmospheric Composition and Structure, Pollution, urban and regional (0305, 0478, 4251), Biogeosciences, Pollution, urban, regional and global (0345, 4251), Global Change, Regional climate change, Atmospheric Processes, Radiative processes
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit