Atmospheric boron was found to be predominantly gaseous in ambient samples and in stacks of coal-fired power plants. Typical gas/particulate ratios ranged from 20 to more than 100, with stack ratios above 100 and ambient ratios generally below 100. In the stacks, B/SO2 ratios were lower than expected from bulk U.S. coals, consistent with volatilization of 20-80 percent of the boron during combustion. Midwestern ambient B/SO2 ratios were at or above stack values, with the lowest ratios associated with highest concentrations. SO2 was always more variable than gaseous boron. These observations are consistent with coal combustion as the major source of atmospheric boron (and SO2) in the Midwest. In northern Vermont, concentrations of gaseous boron and SO2 were several times lower than in the Midwest, but the B/SO2 ratio was several times higher. Both species passed through quasiweekly in-phase cycles of concentration with the relative amplitudes being greater for SO2 than for gaseous boron. All major pulses of boron and SO2 came from the direction of the Midwest, on the backsides of high-pressure areas. Since the ocean is also a source of gaseous boron, its anthropogenic tracer potential for acid deposition studies will be most useful in the interior of continents. |