EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Koeve 2006
Koeve, W. (2006). C:N stoichiometry of the biological pump in the North Atlantic: Constraints from climatological data. Global Biogeochemical Cycles 20. doi: 10.1029/2004GB002407. issn: 0886-6236.

Recently and independently published estimates of global net community production which were based on seasonal changes of either nutrients (NO3 and PO4 (Louanchi and Najjar, 2000)) and salinity normalized dissolved inorganic carbon (NCt (Lee, 2001)) in the surface ocean indicate that the stoichiometry of new production strongly differs from the well-established remineralization ratios in the deep ocean (the Redfield ratio). This difference appears to be most pronounced in the North Atlantic Ocean. Data quality issues as well as methodological differences in the data analysis applied in the published studies, however, make this comparison of nutrient- and carbon-based estimates ambiguous. Here I present an analysis based on a combination of historical data (World Ocean Atlas and Data 1998) and empirical approaches and provide a reassessment of the C:N elemental ratio of new (export) production in the North Atlantic. It is found that the estimate of winter nutrient fields is the most crucial step in estimating basin-scale, time-integrated C:N ratios of new production. An approach is developed which allows an estimate of winter nitrate and total CO2 concentrations which are consistent with estimates from an isopycnal outcrop analysis where these are available. Regional trends in the spring + summer integrated C:N ratio of new production suggest an increase from high latitudes toward the subtropics. The basin-integrated C:N ratio of new production between 40¿N and 65¿N is 11.4 ¿ 1.4, far exceeding the Redfield ratio. The bulk Corg:Cinorg rain ratio estimated for the same region is 7.7. The fate of organic carbon produced in excess of the Redfield equivalent of nitrate uptake is discussed. It is suggested that a considerable fraction of excess carbon is remineralized above the depth of the winter mixed layer.

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, Biological and Chemical, Carbon cycling, Oceanography, Biological and Chemical, Nutrients and nutrient cycling (0470, 1050), Oceanography, Biological and Chemical, Phytoplankton, Cryosphere, Modeling
Journal
Global Biogeochemical Cycles
http://www.agu.org/journals/gb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit