EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Chen et al. 2006
Chen, C., Rundle, J.B., Li, H., Holliday, J.R., Turcotte, D.L. and Tiampo, K.F. (2006). Critical point theory of earthquakes: Observation of correlated and cooperative behavior on earthquake fault systems. Geophysical Research Letters 33: doi: 10.1029/2006GL027323. issn: 0094-8276.

The critical point theory for earthquakes was originally proposed to explain the scaling relations observed in earthquakes, including the Gutenberg-Richter frequency- magnitude relation and the Omori's law for aftershocks. In this model, main shocks, their foreshocks and aftershocks are all associated with the formation of a correlated, cooperative spatial region with high stress. Until now, only indirect evidence of the existence of these correlated regions has been reported. Here in this paper we present observations and analyses that allow us to directly map the high stress, spatially correlated regions preceding four major earthquakes, i.e. the 1992 Landers (California), 1995 Kobe (Japan), 1999 Chi-Chi (Taiwan) and 1999 Hector Mine (California) earthquakes. We therefore conclude that the locations and extent of large main shocks and their immediate aftershocks can be determined from seismicity data taken prior to the main shocks, and provide additional evidence in support of the critical point theory for earthquakes.

BACKGROUND DATA FILES

Abstract

Keywords
Nonlinear Geophysics, Critical phenomena, Nonlinear Geophysics, Complex systems, Nonlinear Geophysics, Emergent phenomena, Nonlinear Geophysics, Self-organization, Seismology, Earthquake interaction, forecasting, and prediction (1217, 1242)
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit