EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Shillington et al. 2006
Shillington, D.J., Holbrook, W.S., Van Avendonk, H.J.A., Tucholke, B.E., Hopper, J.R., Louden, K.E., Larsen, H.C. and Nunes, G.T. (2006). Evidence for asymmetric nonvolcanic rifting and slow incipient oceanic accretion from seismic reflection data on the Newfoundland margin. Journal of Geophysical Research 111: doi: 10.1029/2005JB003981. issn: 0148-0227.

Prestack depth migrations of seismic reflection data collected around the Ocean Drilling Program (ODP) Leg 210 transect on the Newfoundland nonvolcanic margin delineate three domains: (1) extended continental crust, (2) transitional basement, and (3) apparent slow spreading oceanic basement beyond anomaly M3 and indicate first-order differences between this margin and its well-studied conjugate, the Iberia margin. Extended continental crust thins abruptly with few observed faults, in stark contrast with the system of seaward dipping normal faults and detachments imaged within continental crust off Iberia. Transition zone basement typically appears featureless in seismic reflection profiles, but where its character can be discerned, it does not resemble most images of exhumed peridotite off Iberia. Seismic observations allow three explanations for transitional basement: (1) slow spreading oceanic basement produced by unstable early seafloor spreading, (2) exhumed, serpentinized mantle with different properties from that off Iberia, and (3) thinned continental crust, likely emplaced by one or more detachment or rolling-hinge faults. Although we cannot definitively discriminate between these possibilities, seismic reflection profiles together with coincident wide-angle seismic refraction data tentatively suggest that the majority of transitional basement is thinned continental crust emplaced during the late stages of rifting. Finally, seismic profiles image abundant faults and significant basement topography in apparent oceanic basement. These observations, together with magnetic anomaly interpretations and the recovery of mantle peridotites at ODP Site 1277, appear to be best explained by the interplay of extension and magmatism during the transition from nonvolcanic rifting to a slow spreading oceanic accretion system.

BACKGROUND DATA FILES

Abstract

Keywords
Tectonophysics, Continental margins, divergent (1212, 8124), Marine Geology and Geophysics, Marine seismics (0935, 7294), Exploration Geophysics, Seismic methods (3025, 7294), Marine Geology and Geophysics, Ocean drilling, Marine Geology and Geophysics, Midocean ridge processes
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit