EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Winkler et al. 2006
Winkler, P.M., Vrtala, A., Rudolf, R., Wagner, P.E., Riipinen, I., Vesala, T., Lehtinen, K.E.J., Viisanen, Y. and Kulmala, M. (2006). Condensation of water vapor: Experimental determination of mass and thermal accommodation coefficients. Journal of Geophysical Research 111: doi: 10.1029/2006JD007194. issn: 0148-0227.

Experimental determinations of mass and thermal accommodation coefficients αm and αt for condensation of water vapor in air have been conducted covering a temperature range from about 250 to 290 K. For the first time, both coefficients have been determined directly and simultaneously. To this end, growth of water droplets in air has been observed at different total gas pressures ranging from about 1000 down to 100 hPa. Monodispersed seed particles have been used as condensation nuclei. After addition of water vapor with well-defined partial vapor pressure, supersaturation was achieved by adiabatic expansion in an expansion chamber. Most experiments reported in the present paper were performed at vapor saturation ratios ranging from 1.30 to 1.50. Monodispersed Ag particles with a diameter of 9 nm have been used as condensation nuclei, and for humidification a diffusion humidifier was applied. One experiment was performed at the saturation ratio of 1.02, which resembles conditions observed in the Earth's lower atmosphere. In this experiment, monodispersed DEHS particles with a diameter of 80 nm were used as condensation nuclei, and water vapor was generated by quantitative evaporation of a liquid jet. Droplet growth was monitored using the CAMS method. For determination of the accommodation coefficients, experimental droplet growth curves were compared to corresponding theoretical curves. Quantitative comparison was performed by varying the respective accommodation coefficient and the starting time of droplet growth in a two-parameter best fit procedure. Considering the uncertainty with respect to the starting time of droplet growth and the uncertainties of the experimental water vapor supersaturation, corresponding maximum errors have been determined. From the results obtained it can be stated that αt is larger than 0.85 over the whole considered temperature range. For 250--270 K, values of αm below 0.8 are excluded, and for higher temperatures up to 290 K we can exclude values of αm below 0.4. Both coefficients are likely to be unity for all studied conditions. The results of this study enable accurate predictions of the formation and growth of cloud droplets required to parameterize cloud light scattering/absorption and precipitation properties in climate models.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801, 4906), Atmospheric Composition and Structure, Cloud physics and chemistry, Atmospheric Composition and Structure, Chemical kinetic and photochemical properties
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit