EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Ramana & Ramanathan 2006
Ramana, M.V. and Ramanathan, V. (2006). Abrupt transition from natural to anthropogenic aerosol radiative forcing: Observations at the ABC-Maldives Climate Observatory. Journal of Geophysical Research 111: doi: 10.1029/2006JD007063. issn: 0148-0227.

Using aerosol-radiation observations over the north Indian Ocean, we show how the monsoon transition from southwest to northeast flow gives rise to a similar transition in the direct aerosol radiative forcing from natural to anthropogenic forcing. These observations were taken at the newly built aerosol-radiation-climate observatory at the island of Hanimaadhoo (6.776¿N, 73.183¿E) in the Republic of Maldives. This observatory is established as a part of Project Atmospheric Brown Clouds (ABC) and is referred to as the ABC-Maldives Climate Observatory at Hanimaadhoo (ABC_MCOH). The transition from the southwest monsoon during October to the northeast monsoon flow during early November occurs abruptly over a period of few weeks over ABC-MCOH and reveals a dramatic contrast between the natural marine aerosols transported from the south Indian Ocean by the southwest monsoon and that of the polluted aerosols transported from the south and Southeast Asian region by the northeast monsoon. We document the change in the microphysical properties and the irradiance at the surface, to identify the human signature on aerosol radiative forcing. We first establish the precision of surface radiometric observations by comparing simultaneous observations using calibrated Kipp & Zonen and Eppley pyrheliometers and pyranometers for direct, diffuse and global solar radiation. We show that the direct, diffuse and global radiation can be measured within a precision of about 3 to 5 Wm-2. Furthermore, when we include the observed aerosol optical properties as input into the Monte Carlo Aerosol Cloud Radiation (MACR) model (developed by us using Indian Ocean Experiment data), the simulated fluxes agree with the observed direct, diffuse and global fluxes within the measurement accuracy. A steady southwest monsoon flow of about 5 to 7 ms-1 persists until middle of October which switches to an abrupt change in direction to northeast flow of similar speeds bringing in polluted air from south Asia. However, it is not until end of November that a steady northeasterly flow is well established. The abrupt transition is accompanied by a large increase in aerosol optical depth from about 0.1 in October to as high as 0.4 during January, the SSA decreases from 1 to about 0.9, and the Angstrom coefficient increases from about 0.5 (suggesting large particles > 1 micron) to about 1.2 in January (submicron particles) and an increase in aerosol extinction below 3 km altitude. These changes are consistent with the transport of continental pollution from south and Southeast Asia (about 1000 to several 1000 km away from ABC_MCOH) to the north Indian Ocean during the northeast monsoon. The direct aerosol forcing, determined solely from radiometric observations without resorting to models, changes from -5 Wm-2 during October to -22 Wm-2 during January. About 50% of this forcing occurs in the photosynthetically active part of the solar spectrum (0.4 to 0.7 micron). MACR shows that the decrease in SSA from 1 to 0.9 changes the aerosol forcing efficiency by a factor of about 2 from about -40 Wm-2 (per AOD) in October to -80 Wm-2 (per AOD) in January. Thus the arrival of the brown clouds from south and Southeast Asia has a large seasonal dimming effect over remote parts of the north Indian Ocean. The observational results presented here should be used for validating climate models that attempt to simulate the anthropogenic effects of aerosol forcing on climate. The observational and model results presented in this study shows how near continuous surface based observations can be used to differentiate the human impact on aerosol forcing which is a major challenge for models.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Radiation, transmission and scattering, Atmospheric Composition and Structure, Aerosols and particles (0345, 4801, 4906), Global Change, Atmosphere (0315, 0325), Hydrology, Anthropogenic effects (4802, 4902)
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit