The vertical profile of meridional transport in the South Atlantic is examined by combining paleoceanographic observations with a geostrophic circulation model using an inverse method. δ18Ocalcite observations along the margins of the South Atlantic show that upper-ocean cross-basin differences were weaker during the Last Glacial Maximum (LGM) than the Holocene. The δ18Ocalcite observations can be explained by a shift of water-mass properties without any change in the overturning circulation. Alternatively, they may indicate a reduced LGM cross-basin density difference and, via the thermal wind relation, a reduced vertical shear. Model inversions of δ18Ocalcite are found to require meridional transports different from the modern only after three assumptions are made: temperature and salinity distributions are spatially smooth, the relationship between salinity and δ18Owater is linear and spatially invariant, and LGM temperatures are known to within 1¿C along the margins. The last assumption is necessary because an independent constraint on temperature or salinity is required to determine density from δ18Ocalcite observations. δ18Ocalcite observations are clearly useful, but before any firm constraints can be placed on LGM meridional transport, it appears necessary to better determine the relationship between δ18Ocalcite and density. |